Telegram Group & Telegram Channel
Когда не стоит использовать обобщённые линейные модели (GLM), такие как линейная и логистическая регрессии?

1️⃣ Если между переменными наблюдается значительная нелинейность. В таких случаях лучше рассмотреть альтернативные модели, способные учесть эти особенности.
2️⃣ Обобщённые линейные модели предполагают выполнение определённых условий: нормальность остатков, гомоскедастичность и отсутствие мультиколлинеарности. Если эти условия не соблюдаются, результаты могут оказаться ненадёжными.
3️⃣ GLM могут быть подвержены влиянию выбросов или экстремальных значений.



tg-me.com/ds_interview_lib/754
Create:
Last Update:

Когда не стоит использовать обобщённые линейные модели (GLM), такие как линейная и логистическая регрессии?

1️⃣ Если между переменными наблюдается значительная нелинейность. В таких случаях лучше рассмотреть альтернативные модели, способные учесть эти особенности.
2️⃣ Обобщённые линейные модели предполагают выполнение определённых условий: нормальность остатков, гомоскедастичность и отсутствие мультиколлинеарности. Если эти условия не соблюдаются, результаты могут оказаться ненадёжными.
3️⃣ GLM могут быть подвержены влиянию выбросов или экстремальных значений.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/754

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA